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Outline of the talk

Introduction to Homogeneous dynamics.

(1) An motivating example on T2.

(2) Ratner’s uniform equidistribution theorem: qualitative and effective
aspects.

Some applications of effective aspects of homogeneous dynamics to
number theory

(1) Oppenheim’s conjecture on quadratic forms.

(2) Khintchine’s theorem in Diophantine approximation.

Some further questions.
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An example in T2

A motivating example:

Denote by T2 = R2/Z2 a 2-dimensional torus.
For a vector v ∈ R2, the orbit {tv mod Z2 ∈ T2 : t ∈ R} is{

periodic, if the slope of v is rational,

equidistributed, if the slope of v is irrational,
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Denote by T2 = R2/Z2 a 2-dimensional torus.
For a vector v ∈ R2, the orbit {tv mod Z2 ∈ T2 : t ∈ R} is{

periodic, if the slope of v is rational,

equidistributed, if the slope of v is irrational,

Figure: Equidistribution on T2
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An example in T2

A reinterpretation using Lie group actions:
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An example in T2

A reinterpretation using Lie group actions:

• G = R2= a Lie group. • Γ = Z2=a lattice of R2.

• T2 = G/Γ=a homogeneous space of R2.

• U = {tv ∈ R2 : t ∈ R}= a one-parameter unipotent subgroup in the
Lie group R2.

• U/Z2= the U-orbit in G/Γ.

Then the U-orbit is either · a subtorus in G/Γ or · equidistributed in G/Γ.

Question: Let G be a Lie group, Γ < G a lattice, U < G a unipotent
subgroup and x ∈ G/Γ. Do we have a nice description of Ux ⊂ G/Γ ?
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Homogeneous dynamics: qualitative aspect

Dani (1982): Let G = SL2(R) and Γ = SL2(Z). Consider

U =

{(
1 s
0 1

)
: s ∈ R

}
.
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Homogeneous dynamics: qualitative aspect

Dani (1982): Let G = SL2(R) and Γ = SL2(Z). Consider

U =

{(
1 s
0 1

)
: s ∈ R

}
.

Then given any x ∈ G/Γ, Ux is either isomorphic to R/Z (periodic) or
equidistributed in G/Γ.

Figure: Equidistribution of Ux in the upper half plane model of SL2(R)/ SL2(Z)
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Homogeneous dynamics: qualitative aspect

Raghunathan’s conjecture (Mid-1970s): Let G be a Lie group, Γ < G be a
lattice and U < G be a one-parameter unipotent subgroup of G . Then for
any x ∈ G/Γ, the orbit Ux is equidistributed in the smallest
sub-homogeneous space in G/Γ containing Ux .
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Homogeneous dynamics: qualitative aspect

Raghunathan’s conjecture (Mid-1970s): Let G be a Lie group, Γ < G be a
lattice and U < G be a one-parameter unipotent subgroup of G . Then for
any x ∈ G/Γ, the orbit Ux is equidistributed in the smallest
sub-homogeneous space in G/Γ containing Ux .

Many partial results (Dani, Margulis, Shah ... ) until

Theorem (Ratner, 1990s)

Raghunathan’s conjecture is true.

In applications to number theory: Shah’s result on equidistribution of
expanding translates of a unipotent orbit by a diagonal flow.
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Homogeneous dynamics: qualitative aspect

Theorem (Shah, 1996, special case 1)

Let G = SLd+1(R), Γ = SLd+1(Z). For t > 0, s ∈ Rd , let

a(t) =


t

1
d+1

. . .

t
1

d+1

t−
d

d+1

 , u(s) =


1 s1

. . .
...

1 sd
1

 .

Then for any x ∈ G/Γ, any f ∈ Cc(G/Γ),

lim
t→∞

∫
[0,1]d

f (a(t)u(s)x)ds =

∫
f dmG/Γ.

Remark: G/Γ= the space of all unimodular lattices in Rd+1.

Homogeneous dynamics and its applications 7 / 22



Homogeneous dynamics: qualitative aspect

Theorem (Shah, 1996, special case 2)

Let G = SL2(R)⋉R2, Γ = SL2(Z)⋉ Z2 and H = SL2(R)× {0}. For any
t > 0 and s ∈ R, let

a(t) =

((
t1/2

t−1/2

)
, 0

)
, u(s) =

((
1 s

1

)
, 0

)
.

Then for any y ∈ G/Γ, either Hy is periodic or for any f ∈ Cc(G/Γ),

lim
t→∞

∫ 1

0
f (a(t)u(s)y)ds =

∫
f dmG/Γ.

Example: For yξ = (Id, ξ)Γ/Γ where ξ ∈ R2, Hy is periodic if and only if
ξ ∈ Q2.

Remark: G/Γ= the space of affine unimodular lattices in R2.
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Homogeneous dynamics: effective aspect

Ratner’s and Shah’s uniform distribution theorem is qualitative.
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Ratner’s and Shah’s uniform distribution theorem is qualitative.

Examine dynamics in T2:

Theorem (Weyl’s effective equidistribution theorem)

Given v ∈ R2 \ {0} with slope θ. Assume θ is Diophantine, then there
exists c = c(θ) > 0 such that for any f ∈ C∞(T2),

1

T

∫ T

0
f (tv)dt =

∫
f dmT2 + O(T−c)S(f ).
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Homogeneous dynamics: effective aspect

Ratner’s and Shah’s uniform distribution theorem is qualitative.

Examine dynamics in T2:

Theorem (Weyl’s effective equidistribution theorem)

Given v ∈ R2 \ {0} with slope θ. Assume θ is Diophantine, then there
exists c = c(θ) > 0 such that for any f ∈ C∞(T2),

1

T

∫ T

0
f (tv)dt =

∫
f dmT2 + O(T−c)S(f ).

In order to obtain more powerful results in number theory, an effective
Ratner/Shah-type theorem is desired.
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Homogeneous dynamics: effective aspect

Theorem (Kleinbock-Margulis, 1996)

Let G = SLd+1(R), Γ = SLd+1(Z). For t > 0, s ∈ Rd , let

a(t) =


t

1
d+1

. . .

t
1

d+1

t−
d

d+1

 , u(s) =


1 s1

. . .
...

1 sd
1

 .

Then there exists c > 0 such that for any x ∈ G/Γ, t > 0 and
f ∈ C∞

c (G/Γ),∫
[0,1]d

f (a(t)u(s)x)ds =

∫
f dmG/Γ + O(t−c inj(x)−1)S(f ).
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d+1

. . .

t
1

d+1

t−
d

d+1
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
1 s1

. . .
...

1 sd
1

 .

Then there exists c > 0 such that for any x ∈ G/Γ, t > 0 and
f ∈ C∞

c (G/Γ),∫
[0,1]d

f (a(t)u(s)x)ds =

∫
f dmG/Γ + O(t−c inj(x)−1)S(f ).

Proof: using exponential mixing of a(t) action+Margulis’ thickening trick.
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Homogeneous dynamics: effective aspect

Theorem (Strömbergsson, 2015)

Let G = SL2(R)⋉R2, Γ = SL2(Z)⋉ Z2 and H = SL2(R)× {0}. For any
t > 0 and s ∈ R, let

a(t) =

((
t1/2

t−1/2

)
, 0

)
, u(s) =

((
1 s

1

)
, 0

)
.

Given yξ = (Id, ξ)Γ/Γ such that ξ is Diophantine. Then there exists
c = c(ξ) > 0 such that for any f ∈ C∞

c (G/Γ) and t > 0,∫ 1

0
f (a(t)u(s)yξ)ds =

∫
f dmG/Γ + O(t−c)S(f ).

Proof: using very delicate Fourier analysis on the torus fiber bundle T2.
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Homogeneous dynamics: effective aspect

Effective equidistribution in homogeneous spaces:

Green-Tao (2012): unipotent orbits in Nilmanifold.

Kim (2021): SLn(R)⋉Rn/ SLn(Z)⋉ Zn

Lindenstrauss-Mohammadi-Wang (2023):
SL2(R)× SL2(R)/ SL2(Z)× SL2(Z).

a(t) =

((
t1/2

t−1/2

)
,

(
t1/2

t−1/2

))
, u(s) =
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Green-Tao (2012): unipotent orbits in Nilmanifold.

Kim (2021): SLn(R)⋉Rn/ SLn(Z)⋉ Zn

Lindenstrauss-Mohammadi-Wang (2023):
SL2(R)× SL2(R)/ SL2(Z)× SL2(Z).

a(t) =

((
t1/2

t−1/2

)
,

(
t1/2

t−1/2

))
, u(s) =

((
1 s

1

)
,

(
1 s

1

))

Lei Yang (2025): SL3(R)/ SL3(Z).

a(t) =

t1/2

t−1/2

1

 , u(s) =

1 s 0
1 0

1

 .
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Homogeneous dynamics: effective aspect

There are also discretized Ratner-type theorem.
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Homogeneous dynamics: effective aspect

There are also discretized Ratner-type theorem.

Benoist-Quint (2010s): Qualitative Ratner-type theorem for semisimple
random walks on homogeneous spaces.

Bourgain-Furman-Lindenstrauss-Mozes (2010): Effective distribution of
random walks on Td by the action of SLd(Z).

Simmons-Weiss (2019), Prohaska-Sert-Shi (2023)

Bénard-He (2024): Effective Ratner-type theorem for semisimple random
walks on SL2(R)/ SL2(Z).

Bénard-He-Zhang (2024,2025): Effective Ratner-type theorem for some
upper triangular random walks on SLd+1(R)/ SLd+1(Z).
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Oppenheim’s conjecture

There are deep connections between Homogeneous dynamics and number
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Homogeneous dynamics and its applications 14 / 22



Oppenheim’s conjecture

There are deep connections between Homogeneous dynamics and number
theory:

Oppenheim’s conjecture (1929): Let Q(x , y , z) : R3 → R be any
non-degenerated, indefinite and irrational quadratic form. Then Q(Z3) is
dense in R.

Homogeneous dynamics and its applications 14 / 22



Oppenheim’s conjecture

There are deep connections between Homogeneous dynamics and number
theory:

Oppenheim’s conjecture (1929): Let Q(x , y , z) : R3 → R be any
non-degenerated, indefinite and irrational quadratic form. Then Q(Z3) is
dense in R.

Example: Q(x , y , z) = x2 + y2 −
√
2z2, then it is conjectured that Q(Z3)

is dense in R.

Homogeneous dynamics and its applications 14 / 22



Oppenheim’s conjecture

There are deep connections between Homogeneous dynamics and number
theory:

Oppenheim’s conjecture (1929): Let Q(x , y , z) : R3 → R be any
non-degenerated, indefinite and irrational quadratic form. Then Q(Z3) is
dense in R.

Example: Q(x , y , z) = x2 + y2 −
√
2z2, then it is conjectured that Q(Z3)

is dense in R.

Margulis’ resolution using qualitative dynamics of unipotent orbits in
SL3(R)/ SL3(Z) (1980s): Oppenheim’s conjecture holds true.

Homogeneous dynamics and its applications 14 / 22



Oppenheim’s conjecture

There are deep connections between Homogeneous dynamics and number
theory:

Oppenheim’s conjecture (1929): Let Q(x , y , z) : R3 → R be any
non-degenerated, indefinite and irrational quadratic form. Then Q(Z3) is
dense in R.

Example: Q(x , y , z) = x2 + y2 −
√
2z2, then it is conjectured that Q(Z3)

is dense in R.

Margulis’ resolution using qualitative dynamics of unipotent orbits in
SL3(R)/ SL3(Z) (1980s): Oppenheim’s conjecture holds true.

Remark: Only a few special cases of Oppenheim’s conjecture were proved
using analytic number theory method before Margulis.
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Oppenheim’s conjecture

Using effective Ratner’s theorem in SL3(R)/ SL3(Z):

Theorem (Lindenstrauss-Mohammadi-Wang-Yang, 2025)

Given a non-degenerated, indefinite and irrational quadratic form
Q : R3 → R. Assume that Q is ”badly approximable” by all rational
quadratic forms. Then there exists κ = κ(Q) > 0, cQ > 0 such that for
any (a, b) ⊂ R,

#{v ∈ Z3 : ∥v∥ ≤ T ,Q(v) ∈ (a, b)} = cQ(b − a)T +R(T )︸ ︷︷ ︸
main term

+Oa,b(T
1−κ)︸ ︷︷ ︸

error

.
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Khintchine’s theorem

Let d ≥ 1 be an integer. Let ψ : N → R≥0 be a non-increasing function.
A vector x = (x1, · · · , xd) ∈ Rd is called ψ-approximable if there exist
infinitely many (p, q) ∈ Zd × N such that

∥qx − p∥∞ < ψ(q).
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Khintchine’s theorem

Let d ≥ 1 be an integer. Let ψ : N → R≥0 be a non-increasing function.
A vector x = (x1, · · · , xd) ∈ Rd is called ψ-approximable if there exist
infinitely many (p, q) ∈ Zd × N such that

∥qx − p∥∞ < ψ(q).

Consider
W (ψ) = {x ∈ Rd : x is ψ-approximable}.

Dirichlet’s theorem: If ψ(q) ≥ q−1/d , then W (ψ) = Rd .

A main goal: Study how the size of W (ψ) depend on ψ.
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Khintchine’s theorem

Theorem (Khintchine, 1920s)

Let ψ : N → R≥0 be a non-increasing function. Denote by Leb[0,1]d the

Lebesgue measure on [0, 1]d . Then

Leb[0,1]d (W (ψ)) =

{
0 if

∑∞
q=1 ψ(q)

d <∞,

1 if
∑∞

q=1 ψ(q)
d = ∞.
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Let ψ : N → R≥0 be a non-increasing function. Denote by Leb[0,1]d the

Lebesgue measure on [0, 1]d . Then

Leb[0,1]d (W (ψ)) =

{
0 if

∑∞
q=1 ψ(q)

d <∞,

1 if
∑∞

q=1 ψ(q)
d = ∞.

Theorem (Schmidt, 1960)

For Leb-a.e. s ∈ Rd , as n → +∞:

∣∣{(p, q) ∈ Zd × N : ∥qs − p∥∞ < ψ(q), 1 ≤ q ≤ n}
∣∣ ∼s,ψ 2d

n∑
q=0

ψ(q)d .
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Khintchine’s theorem

Kleinbock-Margulis (1999): an alternative proof of the classical
Khintchine’s theorem using effective dynamics in SLd+1(R)/ SLd+1(Z):
for all f ∈ C∞

c (G/Γ), t > 0 and x ∈ X∫
[0,1]d

f (a(t)u(s)x)ds =

∫
f dmG/Γ + O(t−c inj(x)−1)S(f ),

where

a(t) =


t

1
d+1

. . .

t
1

d+1

t−
d

d+1

 , u(s) =


1 s1

. . .
...

1 sd
1

 .
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Khintchine’s theorem for self-similar measures

Theorem (BHZ, 2024,2025)

Let ψ : N → R≥0 be a non-increasing function. Let σ be a self-similar
measure on Rd . Then

σ(W (ψ)) =

{
0 if

∑∞
q=1 ψ(q)

d <∞,

1 if
∑∞

q=1 ψ(q)
d = ∞.

Moreover, for σ-a.e. s ∈ Rd , as n → +∞, we have

∣∣{(p, q) ∈ Zd × N : ∥qs − p∥∞ < ψ(q), 1 ≤ q ≤ n}
∣∣ ∼s,ψ 2d

n∑
q=0

ψ(q)d .
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Theorem (BHZ, 2024,2025)

Let ψ : N → R≥0 be a non-increasing function. Let σ be a self-similar
measure on Rd . Then

σ(W (ψ)) =

{
0 if

∑∞
q=1 ψ(q)

d <∞,

1 if
∑∞

q=1 ψ(q)
d = ∞.

Moreover, for σ-a.e. s ∈ Rd , as n → +∞, we have

∣∣{(p, q) ∈ Zd × N : ∥qs − p∥∞ < ψ(q), 1 ≤ q ≤ n}
∣∣ ∼s,ψ 2d

n∑
q=0

ψ(q)d .

Previous results on Khintchine’s theorem for self-similar measures: Weiss
(2000), Kleinbock-Lindenstrauss-Weiss (2004), Einsiedler-Fishman-Shapira
(2011), Simmons-Weiss (2019), Yu (2021) Khalil-Luethi (2023),
Datta-Jana (2024).
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Khintchine’s theorem for self-similar measures

Approach to Khintchine’s theorem for self-similar measures: an effective
Kleinbock-Margulis equidistribution theorem for self-similar measures.
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Khintchine’s theorem for self-similar measures

Approach to Khintchine’s theorem for self-similar measures: an effective
Kleinbock-Margulis equidistribution theorem for self-similar measures.

Let G = SLd+1(R), Γ = SLd+1(Z) and σ a self-similar measure on Rd .
Then there exists c = c(σ) > 0 such that for all f ∈ C∞

c (G/Γ), t > 0 and
x ∈ X ∫

f (a(t)u(s)x)dσ(s) =
∫

f dmG/Γ + O(t−c inj(x)−1)S(f ),

where a(t) =


t

1
d+1

. . .

t
1

d+1

t−
d

d+1

 , u(s) =


1 s1

. . .
...

1 sd
1

 .
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Some further questions on homogeneous dynamics and
Diophantine approximation

Beresnevich-Velani: Prove a Jarńık-Besicovitch result for self-similar
fractals: Given a non-increasing ψ and a self-similar K ⊂ Rd , compute

Hdim(K ∩W (ψ)).

Suxuan Chen (2025): Upper and lower bound estimate for
one-dimensional self-similar fractals.
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Some further questions on homogeneous dynamics and
Diophantine approximation

Beresnevich-Velani: Prove a Jarńık-Besicovitch result for self-similar
fractals: Given a non-increasing ψ and a self-similar K ⊂ Rd , compute

Hdim(K ∩W (ψ)).

Suxuan Chen (2025): Upper and lower bound estimate for
one-dimensional self-similar fractals.
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effective equidistribution theorem for self-similar measures given
weighted diagonal flow.

Duffin-Schaffer type theorem on fractals: Remove the monotonicity
assumption of ψ, then prove a Duffin-Schaffer theorem for fractals.

Khintchine’s theorem for self-affine measures and self-conformal
measures: may requires one to study the random walks induced by
self-affine/conformal IFS on homogeneous spaces.
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Thanks for your attention!

Any questions ?
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