# Multifractal Analysis of Spectral Measures for Sturmian Hamiltonians and the Almost Mathieu Operator

Jie Cao Nankai University

WuHan University October 27, 2025

- 1 A crash course on discrete Schrödinger operator
- 2 Sturmian Hamiltonian—deterministic results
- 3 Sturmian Hamiltonian—almost sure results
- 4 AMO—the absolutely continuous spectral measures

## Discrete Schrödinger operator

Given  $V: \mathbb{Z} \to \mathbb{R}$  bounded. Define the discrete Schrödinger operators  $H_V: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$  as

$$H_{V}\psi := \Delta\psi + V\psi$$
  
$$(H_{V}\psi)_{n} := (\psi_{n+1} + \psi_{n-1}) + V_{n}\psi_{n}.$$

**Fact:**  $H_V$  is bounded, self-adjoint, the spectrum  $\sigma(H_V) \subset \mathbb{R}$  is compact.

**Physically:** It describe the motion of an electron in a material.

The spectral property is related to the conductivity of the material.

## Spectral measure

For any  $\psi \in \ell^2(\mathbb{Z})$ , the spectral measure  $\mu_{\psi}$  is defined by (via Riesz presentation theorem)

$$\int_{\sigma(H_V)} f(E) d\mu_{\psi}(E) := \langle \psi, f(H_V) \psi \rangle, \quad f \in C(\sigma(H_V)).$$

Define the spectral measure of  $H_V$  as

$$\mu_V := \frac{\mu_{\delta_0} + \mu_{\delta_1}}{2}.$$

**Fact:** For any  $\psi \in \ell^2(\mathbb{Z})$ , one has  $\mu_{\psi} \ll \mu_{V}$ .

**Physically:** If  $\mu_V$  is a.c. (p.p., "s.c." ) then the material is a

conductor (insulator, "semi-conductor")



## Periodic potential case— Floquet-Bloch theory

#### Theorem (Floquet-Bloch)

Assume V is n-periodic, then the spectrum of  $H_V$  is given by

$$\sigma(H_V) = \{E \in \mathbb{R} : |t_V(E)| \le 2\} = B_1 \cup B_2 \cup \cdots \cup B_n,$$

where  $t_V$  is a polynomial of degree n, called the trace polynomial of  $H_V$ . The spectral measure  $\mu_V \ll \mathcal{L}|_{\sigma(H_V)}$ .

• For  $V \equiv 0$ . We have

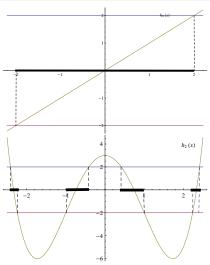
$$t_0(E) = E; \quad \sigma(H_0) = [-2, 2]; \quad \mu_0 = \frac{\chi_{[-2, 2]}(E)dE}{\pi\sqrt{4 - E^2}}$$

• V is 4-periodic and

$$V_{[1,4]} = (1, -1, -1, 1); \quad t(E) = E^4 - 6E^2 + 3.$$



## Pictures of the Spectra



## Quasi-periodic potentials

Two classes of quasi-periodic potentials are heavily studied, they all have the following form:

$$V_{f,\alpha,\lambda,\theta}(n) = \lambda f(\theta + n\alpha) \tag{1}$$

where  $f: \mathbb{S}^1 \to \mathbb{R}$  is bounded,  $\alpha \in [0,1] \setminus \mathbb{Q}$ ,  $\lambda > 0$  and  $\theta \in \mathbb{S}^1$ .

Almost Mathieu potential:

$$f(x) = 2\cos 2\pi x$$
.

The related operator is called AMO.

Sturmian potential:

$$f(x) = \chi_{[1-\alpha,1)}(x).$$

The related operator is called Sturmian Hamiltonian.



## Spectrum and density of states

For operator with potential (1), by the general theory of ergodic Schrödinger operators, the spectrum is independent of  $\theta$ . So we write

$$\Sigma_{\alpha,\lambda}^f := \sigma(H_{V_{f,\alpha,\lambda,\theta}}).$$

Another important measure, called density of states (DOS) of the operator, is defined as the average of the spectral measures:

$$\mathcal{N}^{\mathit{f}}_{lpha,\lambda} := \int_{\mathbb{S}^1} \mu_{V_{\mathit{f},lpha,\lambda, heta}} \mathit{d} heta.$$

Now we focus on Sturmian Hamiltonian and simply the notions to

$$H_{\alpha,\lambda,\theta}$$
,  $\Sigma_{\alpha,\lambda}$ ,  $\mathcal{N}_{\alpha,\lambda}$ .



## Cantor spectrum-fractal is coming

To study quasi-periodic operators, we do the periodic approximation: Choose potentials  $V^{(n)}$  which is  $k_n$ -periodic such that  $V^{(n)} \to V$  in suitable sense. Then  $H_n := H_{V^{(n)}} \stackrel{s}{\to} H_V$ . As a consequence,

$$d_H(\sigma(H_n), \sigma(H_V)) \to 0.$$

By Floquet-Bloch theory,  $\sigma(H_n)$  is made of  $k_n$  non-overlapping bands. When  $n \to \infty$ , the spectrum has the tendency to be a Cantor set.

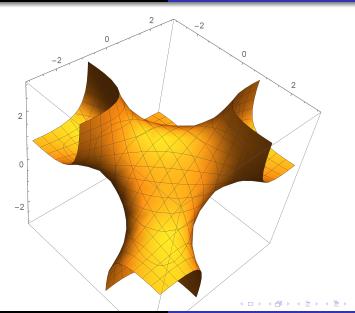
#### Deterministic results

• Fibonacci Hamiltonian:The operator  $H_{\alpha_1,\lambda,\theta}$  with golden ratio  $\alpha_1:=(\sqrt{5}+1)/2$ . This model was introduced by Kohmoto et. al. and Ostlund et. al.(1983) as a model for quasicrystal. Define the Fibonacci trace map  $\mathbf{T}:\mathbb{R}^3\to\mathbb{R}^3$  as

$$\mathbf{T}(x,y,z):=(2xy-z,x,y).$$

Then  $G(x, y, z) := x^2 + y^2 + z^2 - 2xyz - 1$  is invariant under **T**. So for  $\lambda > 0$ , **T** preserves the cubic surface

$$S_{\lambda} := \{(x, y, z) \in \mathbb{R}^3 : G(x, y, z) = \lambda^2/4\}.$$



#### Fibonacci Hamiltonian

Write  $\mathbf{T}_{\lambda} := \mathbf{T}|_{S_{\lambda}}$  and let  $\Lambda_{\lambda}$  be the attractor of  $\mathbf{T}_{\lambda}$ . Then  $\Lambda_{\lambda}$  is a locally maximal compact transitive hyperbolic set of  $\mathbf{T}_{\lambda}$ .

Theorem (Casdagli (CMP 1986), Sütö (CMP 1987), ···, Damanik-Gorodetski-Yessen (Invent 2016))

For Fibonacci Hamiltonian, the following hold:

1) The spectrum  $\Sigma_{\alpha_1,\lambda}$  satisfies

$$\dim_{\mathcal{H}} \Sigma_{\alpha_1,\lambda} = \dim_{\mathcal{B}} \Sigma_{\alpha_1,\lambda} =: D(\alpha_1,\lambda).$$

2)  $D(\alpha_1, \lambda)$  satisfies Bowen's formula:  $D(\alpha_1, \lambda)$  solves the equation  $P(t\phi_{\lambda}) = 0$ , where  $\phi_{\lambda}$  is the geometric potential on  $\Lambda_{\lambda}$ 

$$\phi_{\lambda}(x) := -\log \|D\mathbf{T}_{\lambda}(x)|_{E^{u}}\|.$$

#### $\mathsf{Theorem}\;(\mathsf{continued})$

3) The DOS  $\mathcal{N}_{\alpha_1,\lambda}$  is exact-dimensional and consequently

$$\dim_{H}\mathcal{N}_{\alpha_{1},\lambda}=\dim_{P}\mathcal{N}_{\alpha_{1},\lambda}=:\mathit{d}(\alpha_{1},\lambda).$$

4)  $d(\alpha_1, \lambda)$  satisfies Ledrappier-Young's formula:

$$\mathit{d}(\alpha_1,\lambda) = \dim_{H} \mu_{\lambda,\max} = \frac{\log \alpha_1}{\mathrm{Lyap}^{u} \mu_{\lambda,\max}},$$

where  $\mu_{\lambda,\text{max}}$  is the measure of maximal entropy of  $\mathbf{T}_{\lambda}$ , and  $\log \alpha_1, \operatorname{Lyap}^u \mu_{\lambda,\text{max}}$  are the entropy and the unstable Lyapunov exponent of  $\mu_{\lambda,\text{max}}$ , respectively.

5)  $d(\alpha_1, \lambda) < D(\alpha_1, \lambda)$ .(Barry Simon's Conjecture)

## The coding of the spectra

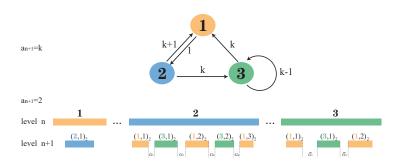
For the spectrum of Sturmain Hamiltonian, we have the following very explicit coding of the established by Raymond:

#### Theorem (Raymond 1997 (Preprint) )

For any  $\lambda > 4$  and  $\alpha \in [0,1] \setminus \mathbb{Q}$ , there exists a symbolic space  $\Omega_{\alpha}$  and a coding map  $\pi_{\alpha} : \Omega_{\alpha} \to \Sigma_{\alpha,\lambda}$ .

For Fibonacci Hamiltonian, the symbolic space  $\Omega_{\alpha_1}$  is essentially the subshift of finite type with alphabet  $\mathcal{A}:=\{e_1,e_2,e_3,e_4\}$  and coincidence matrix

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$



## Sturmian Hamiltonian-specturm

Assume  $\alpha \in [0,1] \setminus \mathbb{Q}$  has expansion  $\alpha = [0; a_1, a_2, \cdots]$ . Define

$$K_*(\alpha) = \liminf_{n \to \infty} (\prod_{j=1}^n a_j)^{1/n}; \quad K^*(\alpha) = \limsup_{n \to \infty} (\prod_{j=1}^n a_j)^{1/n}.$$

#### Theorem (Liu-Wen (Potential 2004),···,Liu-Qu-Wen (Adv 2014))

1) Assume  $\lambda \geq 24$ . The following dichotomies hold:

$$\begin{cases} \dim_{H} \Sigma_{\alpha,\lambda} \in (0,1) & \text{if} \quad K_{*}(\alpha) < \infty \\ \dim_{H} \Sigma_{\alpha,\lambda} = 1 & \text{if} \quad K_{*}(\alpha) = \infty \end{cases}$$

$$\begin{cases} \overline{\dim}_{B} \Sigma_{\alpha,\lambda} \in (0,1) & \text{if} \quad K^{*}(\alpha) < \infty \\ \overline{\dim}_{B} \Sigma_{\alpha,\lambda} = 1 & \text{if} \quad K^{*}(\alpha) = \infty \end{cases}$$

#### Theorem (continued)

2)  $\underline{D}(\alpha,\cdot)$  and  $\overline{D}(\alpha,\cdot)$  are Lipschitz continuous on any bounded interval of  $[24,\infty)$  such that

$$\underline{D}(\alpha, \lambda) = \dim_H \Sigma_{\alpha, \lambda} \quad \text{ and } \quad \overline{D}(\alpha, \lambda) = \overline{\dim}_B \Sigma_{\alpha, \lambda}.$$

Here,  $\underline{D}(\alpha,\cdot)$  and  $\overline{D}(\alpha,\cdot)$  are the pre-dimensions of  $\Sigma_{\alpha,\lambda}$ :

$$\underline{\underline{D}}(\alpha,\lambda) = \liminf_{n \to \infty} s_n(\alpha,\lambda); \quad \overline{\underline{D}}(\alpha,\lambda) = \limsup_{n \to \infty} s_n(\alpha,\lambda),$$

where  $s_n(\alpha, \lambda)$  is the unique number such that

$$\sum_{w \in \Omega_{\alpha,n}} |B_w^{\alpha}(\lambda)|^{s_n(\alpha,\lambda)} = 1.$$

#### Sturmian Hamiltonian-DOS

#### Theorem (Qu, IMRN 2018)

For any  $\lambda > 24$ ,  $\alpha = [a_1, a_2, \cdots]$  with  $a_k \leq M, k \in \mathbb{N}$ . The DOS  $\mathcal{N}_{\alpha,\lambda}$  is both exact upper- and lower-dimensional. there exists a certain  $\alpha$  such that the related  $\mathcal{N}_{\alpha,\lambda}$  is not exact-dimensional.

#### Theorem (Jitomirskaya-Zhang, JEMS 2022)

For any  $\lambda>0$ , there exists Liouvillian frequency  $\alpha$  such that the related DOS satisfies  $\dim_H \mathcal{N}_{\alpha,\lambda}<1$  but  $\dim_P \mathcal{N}_{\alpha,\lambda}=1$ . Consequently,  $\mathcal{N}_{\alpha,\lambda}$  is not exact-dimensional.

## Bellissard's conjecture and Damanik-Gorodetski's result

Until now, all the results are stated for deterministic frequencies. How about the dimensional properties of  $\Sigma_{\alpha,\lambda}$  and  $\mathcal{N}_{\alpha,\lambda}$  for Leb. typical frequency?

Bellissard had the following conjecture in 1980s:

**Conjecture**(Bellissard 1980s): For every  $\lambda > 0$ , the Hausdorff dimension of  $\Sigma_{\alpha,\lambda}$  is Leb. a.e. constant in  $\alpha$ .

#### Theorem (Damanik-Gorodetski, CMP 2015)

For every  $\lambda \geq 24$ , there exists two numbers  $0 < \underline{D}(\lambda) \leq \overline{D}(\lambda)$  such that for Lebesgue almost every  $\alpha \in [0,1] \setminus \mathbb{Q}$ ,

$$\dim_H \Sigma_{\alpha,\lambda} = \underline{D}(\lambda)$$
 and  $\overline{\dim}_B \Sigma_{\alpha,\lambda} = \overline{D}(\lambda)$ .

Idea of the proof(Based on Liu-Qu-Wen 2014): Show that  $\underline{D}(\cdot, \lambda)$  is measurable and invariant under Gauss measure G. Then use the ergodicity of G. The same for  $\overline{D}(\cdot, \lambda)$ .

Natural questions: For fixed  $\lambda \geq 24$ , whether  $\underline{D}(\lambda) = \overline{D}(\lambda)$  holds? Does the full measure set of frequencies depend on  $\lambda$ ? How regular are the functions  $\underline{D}(\lambda)$  and  $\overline{D}(\lambda)$ ? What can one say about the DOS? etc.

## a.s. dimensional properties of the spectrum and the DOS

#### Theorem (C-Qu, Adv 2025)

There exist a subset  $\mathbb{I} \subset [0,1] \setminus \mathbb{Q}$  of full Lebesgue measure and two functions  $d, D : [24,\infty) \to (0,1)$  such that 1) For any  $(\alpha,\lambda) \in \mathbb{I} \times [24,\infty)$ , the spectrum  $\Sigma_{\alpha,\lambda}$  satisfies

$$\dim_H \Sigma_{\alpha,\lambda} = \dim_B \Sigma_{\alpha,\lambda} = D(\lambda).$$

Moerover,  $D(\lambda)$  satisfies a Bowen type formula:  $D(\lambda)$  is the unique zero of a relativized pressure function  $P_G(\Psi_{t,\lambda}^*)$ .

$$P_{G}(\Psi_{\lambda,t}^{*}) := \lim_{n \to \infty} \frac{1}{n} \int_{\mathbb{N}^{\mathbb{N}}} \psi_{\lambda,t,n}^{*}(\alpha) G(d\alpha).$$

#### Theorem (continued)

2) For any  $(\alpha, \lambda) \in \mathbb{I} \times [24, \infty)$ ,  $\mathcal{N}_{\alpha, \lambda}$  is exact-dimensional and

$$\dim_H \mathcal{N}_{\alpha,\lambda} = \dim_P \mathcal{N}_{\alpha,\lambda} = d(\lambda).$$

Moreover,  $d(\lambda)$  satisfies a Ledrappier-Young type formula:

$$d(\lambda) = \frac{\gamma}{-(\Psi_{\lambda})_{*}(\mathscr{N})},$$

where  $\gamma$  is the Lévy's constant,  $\mathcal N$  is a Gibbs measure on the global symbolic space  $\Omega$ .

Here, 
$$\Psi_{\lambda} := \{\psi_{\lambda,n}: n \geq 1\}$$
,  $\psi_{\lambda,n}(x) = \log |B^{\alpha}_{x|_n}(\lambda)|$  if  $\pi(x) = \alpha$  and  $\psi^*_{\lambda,t,n}(\alpha) := \log \sum_{w \in \Omega_{\alpha,n}} \exp(t\psi_{\lambda,n}(x_w)) = \log \sum_{w \in \Omega_{\alpha,n}} |B^{\alpha}_w(\lambda)|$ .

(Here,  $|B_{x|_n}^{\alpha}(\lambda)|$  is a covering band of order n)



Natural questions: For fixed  $\lambda \geq 24$ , whether  $d(\lambda) < D(\lambda)$  holds? Can we use the DOS  $\mathcal{N}_{\alpha,\lambda}$  to provide a hierarchical characterization of the specturm  $\Sigma_{\alpha,\lambda}$ ? That is, to study the Hausdorff dimension of the level set  $\Sigma_{\alpha,\lambda}(\kappa)$  of  $\mathcal{N}_{\alpha,\lambda}$ ,

$$\Sigma_{\alpha,\lambda}(\kappa) = \left\{ x \in \Sigma_{\alpha,\lambda} : \lim_{r \to 0^+} \frac{\log \mathcal{N}_{\alpha,\lambda}(B(x,r))}{\log r} = \kappa \right\}.$$

Furthermore, does the multifractal formalism holds in this case?

#### a.s. multifractal formalism for the DOS

#### Theorem (C-Qu 2025)

Fix each  $\lambda \geq 24$ , the following hold:

- 1) The function  $t \mapsto P_G(\Psi_{\lambda,t}^*)$  is  $C^1$ , strictly convex on  $[0,\infty)$ .
- 2)  $d(\lambda) < D(\lambda)$ .
- 3) For any  $(\alpha, \kappa) \in \mathbb{I} \times [0, k_{\mathsf{max}}]$ ,

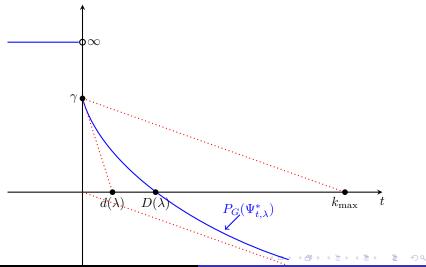
$$\dim_H \Sigma_{\alpha,\lambda}(\kappa) = \inf_t \left\{ P_G(\Psi_{t,\lambda}^*) + \kappa t \right\},$$

where 
$$\gamma/k_{\mathsf{max}} = -\lim_{n \to \infty} \frac{1}{n} \sup\{|B_w^{\alpha}(\lambda)| : w \in \Omega_{\alpha,n}\}.$$

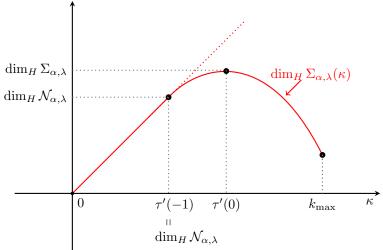
The particular inequality  $dim_H \mathcal{N}_{\alpha,\lambda} < dim_H \Sigma_{\alpha,\lambda}$  establishes a conjecture of Barry Simon in random sense.



## Simon's conjecture



## The multifractal spectrum



#### Theorem (Jitomirskaya (Ann. 1999), Avila (Arxiv 2008))

The spectral measures of the AMO are absolutely continuous if and only if  $|\lambda| < 1$ .

The Lebesgue measure of the specturm  $|\Sigma_{\alpha,\lambda}| = |4-2|\lambda||$ .

#### Theorem (Li-You-Zhou, 2024 Arxiv)

Let  $\alpha \in DC$  and  $0 < \lambda < 1$ , the following results hold:

(1) If the IDS  $\mathcal{N}(x) := \mathcal{N}_{\alpha,\lambda}((-\infty,x]) = k\alpha \mod \mathbb{Z}$ , then

$$\underline{d}_{\mathcal{N}_{\alpha,\lambda}}(x) = \overline{d}_{\mathcal{N}_{\alpha,\lambda}}(x) = \frac{1}{2}.$$

(2) If  $\mathcal{N}(x) \neq k\alpha \mod \mathbb{Z}$ , then

$$\underline{d}_{\mathcal{N}_{\alpha,\lambda}}(x) \in [1/2,1]; \quad \overline{d}_{\mathcal{N}_{\alpha,\lambda}}(x) = 1.$$



## The multifractal structure of Spectral Measures-AMO

Let  $\omega_s(r) := (-\log r)^{-s}$  and define the Diophantine–approximation set

$$D_{lpha}(\delta) = \Big\{x \in [0,1]: \limsup_{|k| o \infty} - rac{\log \|x - klpha\|_{\mathbb{R}/\mathbb{Z}}}{|k|} = \delta\Big\}.$$

#### Theorem (C-Li-Wang-Zhou, 2025 Arxiv)

Let  $\alpha \in DC$  and  $0 < \lambda < 1$ , for any  $\kappa \in [1/2, 1), \delta \in (0, \infty]$ , we have

$$\mathcal{H}^{\omega_s}(D_lpha(\delta)) = \mathcal{H}^{\omega_s}(\Sigma_{lpha,\lambda}(\kappa)) = egin{cases} 0, & ext{if } s > 1, \ \infty, & ext{if } s \leq 1, \end{cases}$$

So  $\dim_{H,\log} \Sigma_{\alpha,\lambda}(\kappa) = \dim_{H,\log} D_{\alpha}(\delta) = 1$ .

A crash course on discrete Schrödinger operator Sturmian Hamiltonian—deterministic results Sturmian Hamiltonian—almost sure results AMO—the absolutely continuous spectral measures

## Thanks for your attention!