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The classical Steinhaus question

▶ Steinhaus (1950s): Are there A,B ⊆ R2 such that

|τA ∩ B| = 1, for every rigid motion τ?

Are there two subsets of the plane which, no matter how moved, always intersect
at exactly one point?

▶ Sierpiński, 1958:

Yes.
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The classical Steinhaus question

▶ Equivalent:∑
b∈B

1ρA(x − b) = 1, for all rotations ρ and for all x ∈ R2.

▶ In tiling language:

ρA ⊕ B = R2, for all rotations ρ.

Every rotation of A tiles (partitions) the plane when translated at the locations B.
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Fixing B = Z2: the lattice Steinhaus question

▶ Can we have ρA ⊕ Z2 = R2 for all rotations ρ?

Can a domain behave simultaneously like all
those squares?

▶ Equivalent: A is a fundamental domain of all ρZ2.
Or,
A tiles the plane by translations at any ρZ2.
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The lattice Steinhaus question
▶ Major result: Jackson and Mauldin, 2002: Yes.

But no measurability.

▶ Can A be Lebesgue measurable? We interpret tiling almost everywhere.
▶ Results (in the negative direction) by

Sierpiński (1958), Croft (1982), Beck (1989),
Mallinikova & Rukshin (1995), K. (1996):
“Best” so far: (K. & Wolff (1999))
If such a measurable A exists then it must be large at infinity:∫

A
|x|

46
27+ϵ dx = ∞.

▶ In higher dimension:
K. & Wolff (1999), K. & Papadimitrakis (2002):

No measurable Steinhaus sets exist for Zd, d ≥ 3.
No Jackson - Mauldin analogue is known for d ≥ 3.
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The zeros of the Fourier Transform

▶ For A to have the Steinhaus property it is equivalent

that 1̂A must vanish on all circles through lattice points.

▶ Too many zeros imply strong decay of 1̂A near infinity.

This implies continuity, but 1A is an indicator function.
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Lattice Steinhaus for finitely many lattices

▶ Given lattices Λ1, . . . ,Λn ⊆ Rd all of volume 1
can we find measurable A which tiles with all Λj?

▶

Generically yes!

If the sum Λ∗
1 + · · · + Λ∗

n is di-
rect then Kronecker-type den-
sity theorems allow us to rear-
range a fundamental domain of
one lattice to accommodate the
others.

Move by λ1 Move by λ2
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Lattice Steinhaus for finitely many lattices

Question
Is there a bounded common tile for Λ1, . . . ,ΛN?

Theorem (S. Grepstad and M.K. (2025))
If L,M are lattices in Rd of the same volume then they possess a bounded, common
fundamental domain.
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Tile with a lattice, pack with another

Theorem (S. Grepstad, M.K. & M. Spyridakis (2025))
If L,M are lattices in Rd with vol M > vol L then there exists a bounded E ⊆ Rd such
that E tiles with L and E packs with M.

▶ Not reducible to common fundamental domains.
▶ Is actually much easier than the common fundamental domain: larger volume

allows room to work.
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An application in Gabor analysis

▶ If K, L are two lattices in Rd with

vol K · vol L = 1,

can we find g ∈ L2(Rd), such that the (K, L) time-frequency translates

g(x − k)e2πiℓ·x, (k ∈ K, ℓ ∈ L)

form an orthogonal basis of L2(Rd)?

▶ Han and Wang (2000):
Since vol (L∗) = vol (K) let g = 1E where

E is a common tile for K, L∗.
▶ L forms an orthogonal basis for any FD of L∗, so of L2(E + x) ( for any x).
▶ Space partitioned in K-translates of E and on each copy L is an orthogonal basis.



10/36

An application in Gabor analysis

▶ If K, L are two lattices in Rd with

vol K · vol L = 1,

can we find g ∈ L2(Rd), such that the (K, L) time-frequency translates

g(x − k)e2πiℓ·x, (k ∈ K, ℓ ∈ L)

form an orthogonal basis of L2(Rd)?
▶ Han and Wang (2000):

Since vol (L∗) = vol (K) let g = 1E where
E is a common tile for K, L∗.

▶ L forms an orthogonal basis for any FD of L∗, so of L2(E + x) ( for any x).
▶ Space partitioned in K-translates of E and on each copy L is an orthogonal basis.



11/36

Multi-tiling functions
▶ A function f tiles with the set of translates Λ if∑

λ∈Λ
f(x − λ) = const. a.e. x ∈ Rd.

▶ We can find a common tiling function f for any set of lattices

Λ1, . . . ,ΛN ⊆ Rd.

Just take (the Dj are fundamental domains of Λj)

f = 1D1 ∗ · · · ∗ 1DN .

▶ For such an f if volΛj ≳ 1 then

diam supp f ≳ N.
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Multi-tiling functions: diameter lower bounds

▶ (K. and Wolff, 1997): If f ∈ L1(Rd), with
∫

f ̸= 0, tiles Rd with Λ1, . . . ,ΛN, and

Λi ∩ Λj = {0} and volΛj ∼ 1

then
diam supp f ≳ N1/d.

Question
What is the smallest diam supp f ?

We know
N1/d ≲ diam supp f ≲ N.

at least when Λi ∩ Λj = {0}.
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Multi-tiling functions: a case of large diameter
Take α1, . . . , αN ∈ (1

2 , 1) to be Q-linearly independent and
Λj = Z(αj, 0) + Z(0, α−1

j ), Λ∗
j = Z(α−1

j , 0) + Z(0, αj).

f tiles with all Λj =⇒ f̂ ≡ 0 on
Λ∗

j .
f̂ has zeros of density ≳ N along
the axes. So

diam supp f ≳ N.

(K. & Papageorgiou, 2022)

Generic over Q (no algebraic
relations) but not geometrically
generic (alignment).
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Multi-tiling functions: a case of large diameter

Question
Is there any case of “generic” lattices with a common tile f s.t.

diam supp f = o(N)?
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Multi-tiling functions: the volume of the support
▶ If f = 1D1 ∗ · · · ∗ 1DN or (more generally)

f = f1 ∗ · · · ∗ fN, where fj ≥ 0 tiles with Λj (1)

then
supp f = supp f1 + · · ·+ supp fN

and (Brunn - Minkowski inequality)

|supp f| ≥
(
|supp f1|1/d + · · ·+ |supp fN|1/d

)d
≳ Nd.

Question
What if we drop nonnegativity from (1)?

What if f is any common tile of the Λj, not given by (1)?
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Multi-tiling sets: Giving up measurability

▶ If G1, . . . ,GN are subgroups of G it is always enough to find a common
fundamental domain (a common tile) of the Gj in

G1 + · · ·+ GN.
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Multi-tiling sets: Giving up measurability
▶ (K. 1997) If the lattices Λ1, . . . ,ΛN in Rd have

(a) the same volume and
(b) a direct sum

then they have a bounded common fundamental domain.

▶ A common FD for the lattices Λi =
{
λi

j

}
j∈N

in the group Λ1 + · · ·+ ΛN is{ N∑
i=2

(λ1
j − λi

j) : j ∈ N

}
.

▶ Hall’s “marriage” theorem =⇒ a good lattice enumeration.
Theorem
If volΛi = volΛj then there is a bijection fij : Λi → Λj with

|x − f(x)| bounded.
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Equal lattice density necessary for boundedness
(at least in some cases)

▶ Suppose
Λ1 = Zd and Λ2 = αZd (α irrational, α > 1).

Then Λ1,Λ2 have no bounded common fundamental domain.

No measurability of the FD assumed!
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Proof for d = 1

▶ If F is a bounded FD in G = Λ1 + Λ2 = {m + nα : m, n ∈ Z}:

F = mi − niα : i = 1, 2, . . . ⊆ [−M,M].

▶ All mi, ni must be unique and Z = {mi} = {ni}.
Renumbering: F = {m − nmα : m ∈ Z}.

▶ Restricting −R ≤ m ≤ R we get

|m − nmα| ≤ M.

or
−R + M

α
≤ nm ≤ R + M

α
.

▶ ∼ 2R values of m correspond to only ∼ 2
αR values of nm

Contradiction, as all nm must be different
(d = 1: K. & Papageorgiou, 2022, d ≥ 2: Grepstad, K. & Spyridakis, 2025).
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Tiling finite abelian groups with a function

▶ G1,G2 subgroups of G, f : G → R≥0 s.t.

∀x ∈ G :
∑

g1∈G1

f(x − g1) = |G1|,
∑

g2∈G2

f(x − g2) = |G2|.

For example f(x) ≡ 1.

Question
How small can |supp f| be?

▶ Write

SG
G1,G2 = min {|supp f| : f ∗ 1G1 ≡ |G1|1G, f ∗ 1G2 ≡ |G2|1G}.

▶ Always SG
G1,G2

≥ max {[G : G1], [G : G2]}.
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Reduction to product groups

▶ If Γ = G/(G1 ∩ G2), Γi = Gi/(G1 ∩ G2) then

SG
G1,G2 = SΓ

Γ1,Γ2 . (2)

▶ Can assume: G = G1 × G2.
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The problem in matrix form

▶ Group structure irrelevant.

▶
Find m × n matrix A with

row sums equal to n, column sums equal to m.
▶ Minimize the support. Call S(m, n) the minumum.

▶ Statisticians call these copulas and use them a lot.
A generalization of doubly stochastic matrices.
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The case m divides n

m





k︷ ︸︸ ︷m · · ·m · · · · · ·

· · ·
k︷ ︸︸ ︷m · · ·m · · ·

· · · · · · · · ·

· · · · · ·
k︷ ︸︸ ︷m · · ·m


︸ ︷︷ ︸

km

▶ Smallest possible support, since we must have ≥ 1 element/column.

S(km,m) = km.
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The case n = km + 1

m





1
k︷ ︸︸ ︷m · · ·m · · · · · ·

1 · · ·
k︷ ︸︸ ︷m · · ·m · · ·

· · · · · · · · ·

1 · · · · · ·
k︷ ︸︸ ︷m · · ·m


︸ ︷︷ ︸

km+1

▶ Also smallest possible support, since Aij ≤ m implies

at least k + 1 terms per row,

so
S(km + 1,m) = (k + 1)m = m + (km + 1)− 1.

(K. & Papageorgiou, 2022)
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The general case: Loukaki, 2022, Etkind and Lev, 2022

Theorem
S(m, n) = m + n − gcd(m, n)
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Tiling R with two lattices: a lower bound for the length
▶ Suppose f : R → R≥0 is measurable and tiles with both Λ1 = Z and with

Λ2 = αZ, where α ∈ (0, 1):∑
n∈Z

f(x − n) = 1,
∑
n∈Z

f(x − nα) = 1
α
, for almost every x ∈ R. (3)

Then
|supp f| ≥

⌈
1
α

⌉
α ≥ 2α. (4)

(K. & Papageorgiou, 2022)
▶ When α = 1 − ϵ: convolution 1[0,1] ∗ 1[0,α] is almost optimal.
▶ When α = 1

2 + ϵ there is a big gap 1 + 2ϵ to 3/2 + ϵ.

Question
What is the smallest possible length of supp f which tiles with Z and αZ?
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Tiling R with two lattices: Etkind and Lev, 2022∑
k∈Z f(x − kα) = p,

∑
k∈Z f(x − kβ) = q. What about the measure of supp f?

▶ α/β /∈ Q
▶ For all p, q ∈ C there is measurable f with |supp f| ≤ α+ β
▶ If p/q /∈ Q+ then for any f must have |supp f| ≥ α+ β.
▶ If f ≥ 0 or f ∈ L1 or f has bounded support then p/q = β/α, |suppf| ≥ α+ β.
▶ If p/q ∈ Q+, gcd(p, q) = 1 we can have

|supp f| < α+ β −min

{
α

q ,
β

p

}
+ ϵ

and must have
|supp f| > α+ β −min

{
α

q ,
β

p

}
▶ α/β ∈ Q+ and simplifying to α = n, β = m, with gcd(n,m) = 1.

Then p/q = m/n and the least possible |supp f| is n + m − 1.
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3 subgroups in a finite abelian group:
Aivazidis, Loukaki and Sambale, 2023

▶ If A1, . . . ,At are complemented isomorphic subgroups of G and the smallest prime
divisor of |A1| is ≥ t then they have a common complement in G.

A ⊆ G is complemented if some FD of A in G is a subgroup of G (called
complement of A).

▶ If A,B,C ⊆ G are cyclic groups of same order then they have a commond FD in G
if and only if the following does not hold:
|A| = |B| = |C| is even and the product of their 2-Sylow subgroups A2B2C2
satisifies

A2B2C2/I = A2/I × B2/I = A2/I × C2/I = B2/I × C2/I

where I = A2 ∩ B2 ∩ C2.
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Diameter: lattices with many relations
▶ Main observation: Λ1, . . . ,ΛN ⊇ Λ and D is a FD of Λ then

f = 1D tiles with all Λi.

at level [Λi : Λ].

▶ Let G be a subgroup of Zd
p. Define the lattice ΛG = (pZ)d + G, which contains

Λ = (pZ)2 with FD
[0, p)d of diameter

√
dp.

▶ Restrict to cyclic subgroups G of Zd
p:
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Back to the diameter: an example, continued
▶ There are

pd − 1
p − 1 ∼ pd−1 =: N

different cyclic subgroups G of Zd
p.

▶ We find volΛG by its density

volΛG =
vol (pZ)d

|G| =
pd

p = pd−1 = N.

▶ Shrink everything by N−1/d so that
Λ′

G = N−1/dΛG

has volume 1.
▶ f(x) := 1[0,p)d(N1/dx) is a common tile for the Λ′

G of diameter
√

dp · N−1/d =
√

dN
1

d−1 N− 1
d =

√
d N

1
d(d−1) (much less than N1/d).

(K. & Papageorgiou, 2022)
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Unconditional lower bounds for the diameter?

Question
Derive a lower bound, growing with N, for

diam supp f

where
f tiles with Λ1, . . . ,ΛN

and volΛj = 1.
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Diameter: The case d = 1.

▶ Previous construction gives nothing in dimension d = 1.

Theorem
We can find N lattices Λj ⊆ R of with volΛj ∼ 1 and a function f with

∫
f > 0 and

supported in an interval of length

N
log0.086··· N

which tiles with all Λj.

For any ϵ > 0 any such function f must have

diam supp f ≳ϵ N1−ϵ.

(K. & Papageorgiou, 2022)
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Diameter: The case d = 1, continued

▶ Define
Λj = λjZ =

1
N + jZ, j = 1, 2, . . . ,N.

Then
Λ∗

j = (N + j)Z,

with union U =
⋃N

j=1(N + j)Z.
▶ f tiles with all Λj ⇐⇒ f̂ vanishes on U \ {0}.

▶ Erdős, 1935: The integers divisible by one of N + 1,N + 2, . . . , 2N have density
→ 0 as N → ∞.

▶ Tenenbaum, 1980: Their density is

O
(

1
log0.086··· N

)
.
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Diameter: The case d = 1, continued

▶ So dens U = O
(

1
log0.086··· N

)
.

▶ Beurling: U separated, dens U < ρ =⇒

∃f : [−ρ, ρ] → C with f̂ ≡ 0 on U,
∫

f = 1.

▶ With ρ = O
(

1
log0.086··· N

)
we get a common tile f of support o(1).

▶ Scale up by a factor of N:

f′(x) = f(x/N), diam supp f′ = o(N),

Λ′
j = NΛj =

N
N + jZ have vol ∼ 1.



34/36

Diameter: The case d = 1, continued

▶ So dens U = O
(

1
log0.086··· N

)
.

▶ Beurling: U separated, dens U < ρ =⇒

∃f : [−ρ, ρ] → C with f̂ ≡ 0 on U,
∫

f = 1.

▶ With ρ = O
(

1
log0.086··· N

)
we get a common tile f of support o(1).

▶ Scale up by a factor of N:

f′(x) = f(x/N), diam supp f′ = o(N),

Λ′
j = NΛj =

N
N + jZ have vol ∼ 1.



34/36

Diameter: The case d = 1, continued

▶ So dens U = O
(

1
log0.086··· N

)
.

▶ Beurling: U separated, dens U < ρ =⇒

∃f : [−ρ, ρ] → C with f̂ ≡ 0 on U,
∫

f = 1.

▶ With ρ = O
(

1
log0.086··· N

)
we get a common tile f of support o(1).

▶ Scale up by a factor of N:

f′(x) = f(x/N), diam supp f′ = o(N),

Λ′
j = NΛj =

N
N + jZ have vol ∼ 1.



35/36

Diameter: The case d = 1: lower bounds

▶ f tiles with Λ1, . . . ,ΛN, densΛj ∼ 1, =⇒

f̂ vanishes on Λ∗
1, . . . ,Λ

∗
N.

▶ Gilboa and Pinchasi, 2014: The union of n arithmetic progressions of length n (of
different steps ∼ 1) contains, for any ϵ > 0,

≳ n2−ϵ points.

▶ Jensen’s formula: Since f̂ has ≳ N2−ϵ roots in [−N,N] =⇒

diam supp f ≳ N1−ϵ.
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The end

Thank you for your attention!


